skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Menghan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite recent advances in the development of computational methods of modeling thrombosis, relatively little effort has been made in developing methods of modeling blood clot embolization. Such a model would provide substantially greater understanding of the mechanics of embolization, as in-vitro and in-vivo characterization of embolization is difficult. Here, a method of computationally simulating embolization is developed. Experiments are performed of blood clots formed in a polycarbonate tube, where phosphate-buffered saline is run through the tube at increasing flow rates until the clot embolizes. The experiments revealed embolization can be initiated by leading edge and trailing edge detachment or by non-uniform detachment. Stress-relaxation experiments are also performed to establish values of constitutive parameters for subsequent simulations. The embolization in the tube is reproduced in silico using a multiphase volume-of-fluid approach, where the clot is modeled as viscoelastic. By varying the constitutive parameters at the wall, embolization can be reproduced in-silico at varying flow rates, and a range of constitutive parameters fitting the experiments is reported. Here, the leading edge embolization is simulated at flow rates consistent with the experiments demonstrating excellent agreement in this specific behavior. 
    more » « less
  2. Abstract Studying brain‐wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro‐ diseases and ‐disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head‐mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain‐wide cerebrovascular reactivity (CVR) at single‐vessel resolution via relative changes in CBV, CBF, and SO2in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti‐correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions. 
    more » « less